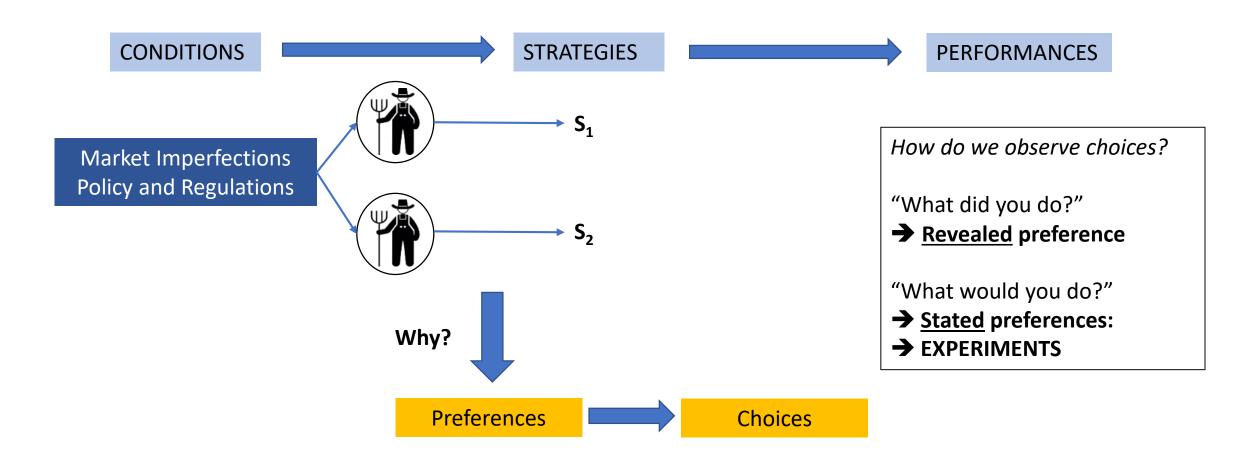


Heterogeneity in farmers' preferences for risk and contract's attributes:

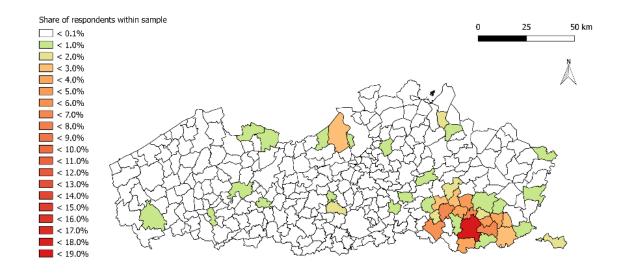

Behavioral evidence from a discrete choice experiment and a risk preferences elicitation task

Dr. Isabelle BONJEAN

H2020-SFS-2014-2 SUFISA Grant agreement 635577

Introduction

Introduction Context Motivation Experiment 1 Experiment 2 Recommendations


Introduction

- Experiments are a controlled data generating process (Croson Gächter, 2010)
 - controlled: most factors which influence behavior are held constant and only one factor of interest (the treatment) is varied at a time
 - enable to draw causal inferences
 - ➤ Powerful tool for evidence-based policy
- Experiments can be:
 - naturally occuring: the process occurs naturally (rare cases)
 - laboratory/field experiments: the researcher controls the data generating process

Context

The Survey:

- from January-March 2018
- Sector: apple and pear in Flanders
- Participation rate: about 20%
- First contact by phone or face-toface then online questionnaire
- Common questionnaire of SUFISA
 + 2 experiments

Context

The Sector:

- Highly educated producers
- Rather entrepreneurial and business-oriented
- Light-subsidy sector
- The sector is in crisis:
 - Russian Boycott
 - Oversupply

Introduction Context Motivation Experiment 1 Experiment 2 Recommendations

Motivation for investigation "Risk" and "Contracts"

- Risk is inherent to agricultural production => plays a key role in the decisions farmers make every day
- Growing concern because of climatic dysfonctioning: more frequent, unpredictable and deep negative shocks
- Market liberalization: increased exposure of farmers to price volatility
- Yet, farmers are the actors in **supply chains** who are most at risk
- In the case-study:
 - Frost of April 2016...
 - Strong criticism of cooperatives...

Experiment 1

Risk Preferences

Experiment 2

Preferences for Contracts

Experiment 1

Risk Preferences

Experiment 1

Two issues regarding the understanding of Risk Preferences

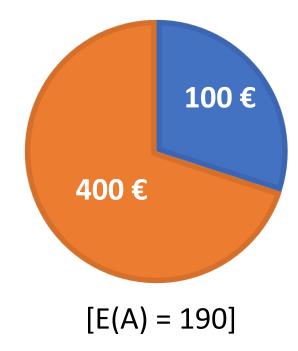
- 1. Confronting theories:
 - Expected Utility Theory: risk aversion
 - Cumulative Prospect Theory: risk aversion + loss aversion + probability distortion (Kahneman and Tversky – Nobel Prize 2002)

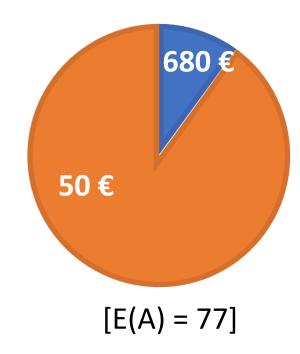
Experiment 1

Two issues regarding the understanding of Risk Preferences

- 1. Confronting theories:
 - Expected Utility Theory : risk aversion
 - Cumulative Prospect Theory: risk aversion + loss aversion + probability distortion (Kahneman and Tversky – Nobel Prize 2002)
- Still performing poorly at explaining farmer's decision-making

Methods


Experiment 1

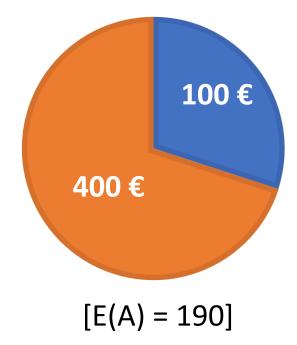

• Laboratory experiments:

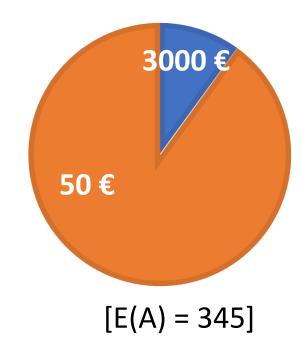
Risk Preference Elicitation Task

Lottery A (safer)

Lottery B (riskier)

Methods


Experiment 1


• Laboratory experiments:

Risk Preference Elicitation Task

Lottery A (safer)

Lottery B (riskier)

Methods

Experiment 1

• Laboratory experiments:

Context

Risk Preference Elicitation Task

INCENTIVIZED!

Played for real money

Experiment 1

1. Empirical input for hypothesis testing in behavioural economics:
Cumulative Prospect Theory

In average, producers are:

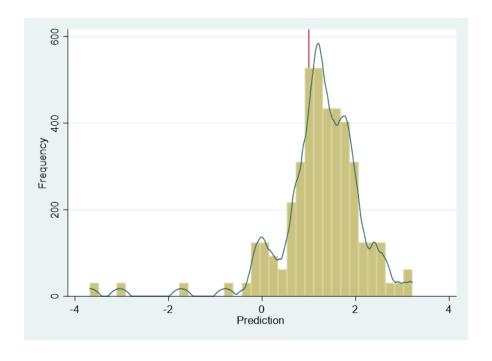
- Very risk-averse
- Not loss-averse
- Do distort probabilities

		Model 1: EUT	Model 2: CPT	Model 3: CPT	i Silkosladi yez KUP i Cesinesine teorri i somil
		(1)	(2)	(3)	
r	constant	0.1384*** (0.0352)			
σ	constant		0.2617*** (0.0118)		
λ	constant		1.2922*** (0.1594)		
γ	constant		0.6839*** (0.0328)	0.6840*** (0.0328)	
α	constant			0.2618*** (0.0118)	
в	constant			0.2934*** (0.0200)	
	H ⁰ : r=1	p-value: 0.000			
	H^0 : $\lambda=1$		p-value: 0.067		
	H^0 : α = θ			p-value: 0.041	
	N	4247/137	4247/137	4247/137	3813/123

* p<0.10, ** p<0.05, *** p<0.01

Experiment 1

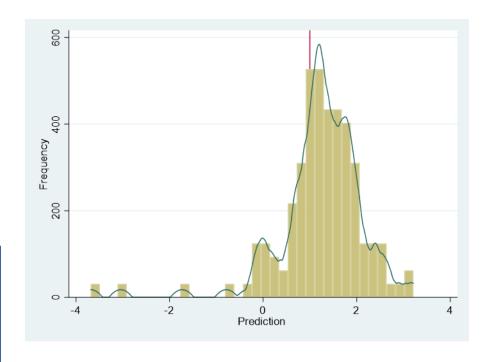
- Empirical input for hypothesis testing in behavioural economics:
 Cumulative Prospect Theory
- 2. Flemish apple-pear producers are less loss-averse than French arable crops farmers


σ constant 0.2617*** 0.280*** 0.2696*** (0.0124) λ constant (0.01594) 1.1625*** (0.1594) γ constant (0.0328) 0.655*** 0.6840*** 0.7002*** (0.0342) α constant (0.0118)			Model 1: EUT	Model 2: CPT	Model 3: CPT	Model 2: CPT Consistent onl	
$\sigma constant \qquad 0.2617^{***} 0.280^{***} 0.2696^{***} \\ (0.0118) (0.0124) \\ \lambda constant 1.2922^{***} 2.275^{***} 1.1625^{***} \\ (0.1594) (0.1564) \\ V constant 0.6839^{***} 0.655^{***} 0.6840^{***} 0.7002^{***} \\ (0.0328) (0.0328) (0.0342) \\ \alpha constant 0.2618^{***} \\ (0.0118) \\ \delta constant 0.2934^{***} \\ (0.0200) \\ H^0: r=1 p-value: 0.000 0.000 \\ H^0: \lambda=1 p-value: 0.007 0.000 \\ H^0: \lambda=1 p-value: 0.041 0.000 \\ H^0: \alpha=6 p-value: 0.041 0.000 \\ D constant 0.2994 \\ D constant $			(1)	(2)	(3)	(4)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	r	constant		**			
$(0.1594) \qquad (0.1564)$ $(0.1594) \qquad (0.1564)$ $(0.0328) \qquad (0.0328) \qquad (0.0342)$ (0.0342) $(0.0318) \qquad (0.0318)$ $(0.0118) \qquad (0.0118)$ (0.0200) $H^0: r=1 \qquad p-value: 0.000 0.000$ $H^0: \lambda=1 \qquad p-value: 0.007 0.000$ $H^0: \alpha=6 \qquad p-value: 0.041 0.000$	σ	constant			0.280***		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	λ	constant			2.275***		
6 constant	γ	constant					
$H^{0}: r=1 \qquad p-value: 0.000 \ 0.000 \\ H^{0}: \lambda=1 \qquad p-value: 0.067 \ 0.000 \qquad p-value: 0.299 \\ H^{0}: \alpha=6 \qquad p-value: 0.041 \ 0.000$	α	constant					
$H^0: \lambda = 1$	в	constant					
H ⁰ : α=β		H ⁰ : r=1	p-value: 0.000 0.000				
p-value, 0.041 0.000		$H^0: \lambda=1$		p-value: 0.067	7 0.000	p-value: 0.299	
N 4247/137 4247/137 4247/137 3813/123		H^0 : α = θ			p-value: 0.041 0.0	00	
		N	4247/137	4247/137			
				lent level			
Maximum Likelihood Estimations with standard errors clustered at the respondent level Stochastic error=0; tech(bfgs 5 dfp 5 nr 5 bhhh 5)		10, ** p<0.05, *** p<0.01	3,				

Experiment 1

- Empirical input for hypothesis testing in behavioural economics: Cumulative Prospect Theory
- 2. Flemish apple-pear producers are less loss-averse than French arable crops farmers
- 3. High level of heterogeneity in risk preferences

Distribution of loss-aversion


Experiment 1

- Empirical input for hypothesis testing in behavioural economics: Cumulative Prospect Theory
- 2. Flemish apple-pear producers are less loss-averse than French arable crops farmers
- 3. High level of heterogeneity in risk preferences

Very loss-averse producers are (20%): "Relatively young and low-educated farmers, having inherited a relatively small farm that they manage alone"

Distribution of loss-aversion

Experiment 1

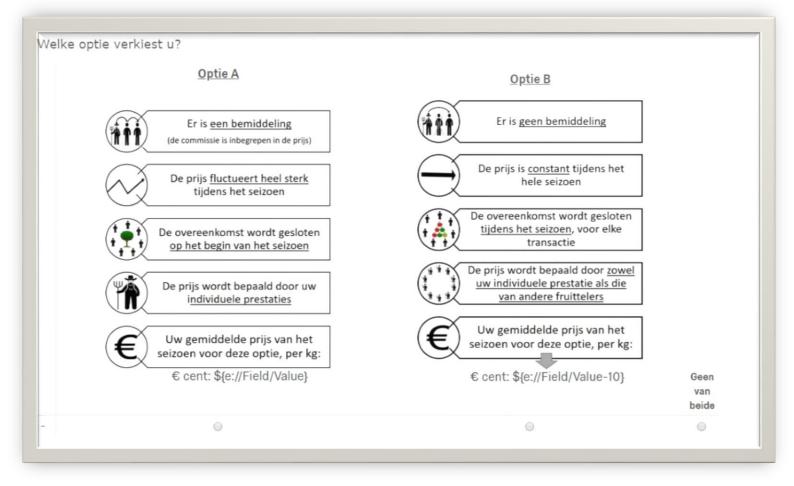
- Empirical input for hypothesis testing in behavioural economics: Cumulative Prospect Theory
- 2. Flemish apple-pear producers are less loss-averse than French arable crops farmers
- 3. High level of heterogeneity in risk preferences
- 4. We explain farmers' strategies and performances

Experiment 1

- Empirical input for hypothesis testing in behavioural economics:
 Cumulative Prospect Theory
- 2. Flemish apple-pear producers are less loss-averse than French arable crops farmers
- 3. High level of heterogeneity in risk preferences
- 4. We explain farmers' strategies and performances

- More risk-averse farmers → Hail insurance
- More loss-averse famers → Pre-harvest contract
- Farmers who distort probabilities → Online sales
- Investment in preventive measures is mainly explained by wealth, on top of risk-aversion

Experiment 2


Preferences for Contracts

Experiment 2

Preferences for contracts' attributes:

Discrete Choice Experiment

Experiment 2

• Preferences for contracts' attributes: **Discrete**

Discrete Choice Experiment

- Provides policy relevant information:
 - What is important to people?
 - How might people trade-off between attributes?
 - Simulation of possible scenarios and cost-effectiveness of different measures?
- Difficulty: complex to design and analyse

Experiment 2

Preferences for contracts' attributes:

Discrete Choice Experiment

ATTRIBUTES	LEVELS						
INTERMEDIARY	YES		NO				
TIMING	BEFORE THE HARVEST		AFTER THE HARVEST				
PRICE POOLING	NO		YES				
PRICE VOLATILITY	CONSTANT PRICE		REDUCED VOLATILITY		HIGH VOLATILITY		
AVERAGE PRICE/KG	-30%;	-20% ; -10%	; 0 ; +10% ; +20% ; +30%	៍ of [average រុ	orice of the most imp	ortant cultivar]	

Experiment 2

ATTRIBUTES	Group 1: 42%	Group 2: 28%	Group 3: 16%	Group 4: 14%
INTERMEDIARY	INTERMEDIARY		NO INTERMEDIARY	
TIMING				AFTER HARVEST
PRICE POOLING		NO PRICE POOLING		
PRICE VOLATILITY	MEDIUM			
AVERAGE PRICE/KG	+++	+		+

Experiment 2

Experiment 2

ATTRIBUTES	Group 1: Group 2: Group 3: Group 42% Saw 16% 14%							
► All producers dislike high price volatility								
	N ➤ Some like medium price volatility							
	➤ but some dislike it = the price poolers (30%), who are also more loss-averse							
PRICE	os averse							
AVERA								

Experiment 2

ATTRIBUTES	ATTRIBUTES Group 1: Group 2: Group 3: Gr 42% 28% 16%							
INTER	All proc	lucers dislike h	igh price volati	lity				
TIMIN >S	➤ Some like medium price volatility							
PRICE b	▶ but some dislike it = the price poolers (30%), who are also more loss-averse							
PRICE								
AVERA to	armers o stay	s producing hig free in their ma	h quality and/oarketing option	or new cultivar	s want			

Lessons Learned and Recommendations

Policy Implications:

- 1. Heterogeneity exists in an important way: Preferences vary within and between population
- 2. Evidence-based policy: ex-ante and ex-post analysis of what works and why?

Lessons learned and recommendations

Research Recommendations:

- 1. Data collection:
 - 1. a lot of data is currently not used
 - 2. First-hand data should target questions that can not be studied with secondary-hand data, with innovative analysis, beyond description
- 2. Representativeness of the sample, at all levels, is key
- Combination of Theory Observational Data Experiments: well-documented descriptive work + model + impact assesment + mechanisms thinking
- 4. Systematic replication of experiments for evidence-based policy (www.reecap.org)

Thank You

Questions?

isabelle.bonjean@kuleuven.be

Eewoud Lievens – Erik Mathijs