How Experiments and Behavioral Economics can help design better policies?

Evidence from SUFISA

18th of March, Krakow

Isabelle BONJEAN KU Leuven

SUFISA

- Conditions Strategy Performances
- Farmers differ in their preferences => individual decisions
- How to measure and isolate preferences? Experiments

What are Economic Experiments?

- Experiments are a controlled data generating process (Croson Gächter, 2010)
 - Controlled = most factors which influence behavior are held constant and only one factor of interest (the treatment) is varied at a time
 - Crucial for being able to draw causal inferences.
- Natural Experiments: the process occurs naturally (rare cases)
- Lab or Field Experiments: the researcher controls the data generating process (most cases)
- Today the integration of experimental economics into mainstream economics is an established fact.
- => Economics is an experimental science, as well as a theoretical and observational one.

What are Economic Experiments used for?

- 1. Evaluating the Impact of Policies: Treatment versus Controlled Group
- 2. Measuring Parameters of theoretical models (simulations): Preferences

- Rather large survey containing questions on:
 - Farmer's characteristics the owner of the farmer
 - Farm characteristics
 - Losses of last year following frost
 - Current and future strategies regarding production, marketing and sales channels
- A risk task
- A discrete choice experiment on farmer's contractual preferences

What we did: Survey Method

- Survey from Jan-Mar 2018
- First contact then online completion
- Phone and face-to-face survey were no option: visualisation and trust issues
- Issues with online:
 - sample bias
 - perfect self-understanding is required
- Advantages of online:
 - Insures respondent's anonimity
 - Proximity to their daily context

Participation rate: about 20%

Sample

The 1st Experiment: Risk Preferences

- One key condition: Risk
 - It is intrinsic to agricultural production => plays a key role in the decisions farmers make every day
 - Growing concern because of climatic dysfonctioning: more frequent, unpredictable and deep negative shocks, more years turn out to be unfavourable
 - Market liberalization: increased exposure of farmers to price volatility
- Preferences: "How much an individual like or dislike risk"
- Two issues:
 - Confronting theories
 - Still performing poorly at explaining farmer's decision-making

 Farmers are usually assumed to be expected utility maximizers (von Neumann and Morgenstern, 1947)

Empirical deviation from EUT

Gain ≠ Loss Domains

Value Gains Outcome Reference point

Kahneman and Tversky (1979, 1992)

Distortion of Probabilities

Probability-weighting function

Risk and Loss aversion

Case 1:

• Option A: 100

• Option B : 50% 200

→ in average agents choose option A hence they are risk averse

Case 2:

• Option A : -100

• Option B : 50% -200

→ in average agents choose option B hence they are risk lovers

Risk and Loss aversion

<u>Case 1:</u>

Option A : 100

Option B : 5% 2000

→There is an increasing portion of agents choosing option B hence becoming risk lover in the gain domain

Case 2:

Option A : -100

Option B : 5% -2000

→There is an increasing portion of agents choosing option A hence becoming **risk averse in**the loss domain

- The most convincing alternative to EUT (Kahneman and Tversky, 1992)
- Two innovations:
 - Distinguish between gains and losses: people are allowed to behave differently in the two outcome domains
 - Probability weighting: people are allowed to distort probabilities
 - Leads to a very different understanding of farmer's decisions!

Literature Review

- CPT is supported by recent experiments
- Number of studies with structurally estimated paramaters is growing but still limited
- There is still work to be done on understanding
 - modelling of farmer's risk preferences
 - the heterogeneity in preferences: farmer's characteristics and risk profile
 - how these preferences influence strategies and performances

- Risk Task included in our questionnaire to extract risk preferences
- We fully controlled the risk exposure and made it vary:
 - We can measure how much each farmer like/dislike risk
 - We can link it to the rest of the data contained in the questionnaire

	Lotte	ery A	Lotte	ry B	E(A)-E(B)
Series 1	30%	70%	10%	90%	
1	400	300	680	50	77
2	400	300	750	50	70
3	400	300	830	50	62
4	400	300	930	50	52
5	400	300	1060	50	39
6	400	300	1250	50	20
7	400	300	1500	50	-5
8	400	300	1850	50	-40
9	400	300	2200	50	-75
10	400	300	3000	50	-155
11	400	300	4000	50	-255
12	400	300	6000	50	-455

The series

	Lotte	ery A	Lotte	E(A)-E(B)	
Series 2	90%	10%	70%	30%	
1	400	300	540	50	-3
2	400	300	560	50	-17
3	400	300	580	50	-31
4	400	300	600	50	-45
5	400	300	620	50	-59
6	400	300	650	50	-80
7	400	300	680	50	-101
8	400	300	720	50	-129
9	400	300	770	50	-164
10	400	300	830	50	-206
11	400	300	900	50	-255
12	400	300	1000	50	-325

		Lotte	ry A	Lotte	E(A)-E(B)	
Series 3		50%	50%	50%	50%	
	1	250	-40	300	-210	60
	2	40	-40	300	-210	-45
	3	10	-40	300	-210	-60
	4	10	-40	300	-160	-85
	5	10	-80	300	-160	-105
	6	10	-80	300	-140	-115
	7	10	-80	300	-110	-130

Bocquého, Jacquet and Reynaud (2014)

Enquête fruitteelt

Reeks 1-2: Aan welke loterij zou u het liefste deelnemen?

30% kans op € 400

0/ 1---- -- 0 400

70% kans op € 100

10% kans op € 750

90% kans op € **50**

J kan het invullen van de vragenlijst op elk moment onderbreken. De reeds ingevulde gegevens worden opgeslagen door uw browser. Om de vragenlijst te vervolledigen dient u enkel opnieuw naar deze webpagina te surfen. Bij vragen of problemen bij het invullen van de vragenlijst kan u steeds contact opnemen net Eewoud Lievens (eewoud.lievens@kuleuven.be; 0498 10 60 76). Het SUFISA project wordt ondersteund door het Horizon 2020 programma van de Europese Commissie.

1st Results

		Model 1: EUT	Model 2: CPT	Model 3: CPT	kvodel 2: CPT Odnik stent onl
		(1)	(2)	(3)	
r	constant	0.1384*** (0.0352)			
σ	constant		0.2617*** (0.0118)		
λ	constant		1.2922*** (0.1594)		
γ	constant		0.6839*** (0.0328)	0.6840*** (0.0328)	
α	constant			0.2618*** (0.0118)	
в	constant			0.2934*** (0.0200)	
	H ⁰ : r=1	p-value: 0.000			
	H^0 : $\lambda=1$		p-value: 0.067		
	H ⁰ : α=β			p-value: 0.041	
	N	4247/137	4247/137	4247/137	3313/123

Standard errors in parentheses

 ${\it Maximum Likelihood Estimations with standard errors clustered at the respondent level}$

Stochastic error=0; tech(bfgs 5 dfp 5 nr 5 bhhh 5)

* p<0.10, ** p<0.05, *** p<0.01

	Model 1: EUT				Mode	el 2: CPT		
		r	σ	λ	γ	σ	λ	γ
	(1)	(2)		(3)			(4)	
educ_sup	0.0304	-0.0341	-0.0601*	0.133	0.129	-0.0562**	-0.100	0.0949
	(0.0786)	(0.0404)	(0.0313)	(0.372)	(0.0871)	(0.0277)	(0.387)	(0.0768)
resp_age	-0.00117	-0.00421	0.000157	-0.00086	-0.00109	0.000321	-0.0131	-0.00026
	(0.00252)	(0.00279)	(0.00141)	(0.0198)	(0.00507)	(0.00131)	(0.0222)	(0.00492)
соор		0.138*				-0.0501	-0.186	0.231***
		(0.0736)				(0.0381)	(0.435)	(0.0886)
inherited		-0.00828				-0.00345	0.0434	0.0446
		(0.0420)				(0.0268)	(0.345)	(0.0950)
co_manag		-0.198***				-0.00653	-0.425	-0.178**
		(0.0743)				(0.0289)	(0.389)	(0.0890)
area_AP		-0.0047**				-0.00093*	-0.033***	0.00299
		(0.00205)				(0.000557)	(0.0123)	(0.00207)
_cons	0.173	0.432***	0.278***	1.251	0.687***	0.344***	3.061**	0.505*
	(0.140)	(0.166)	(0.0737)	(1.012)	(0.265)	(0.0761)	(1.308)	(0.297)
Ν	4092	4092		4092			4092	
p>chi2	0.811	0.00120		0.139			0.00733	

Standard errors in parentheses

Maximum Likelihood Estimations with standard errors clustered at the respondent level Stochastic error=0; tech(bfgs 5 dfp 5 nr 5 bhhh 5)

^{*} p<0.10, ** p<0.05, *** p<0.01

3rd Results: Distribution of loss aversion parameter

Kernel density of predicted values of parameter λ (CPT, with heterogeneity)

Differences in means of observable characteristics between Extremely loss-averse subjects and the rest of the sample

	Group 1: Non Extremely		_	Group 2: Extremely loss-		<u></u> 1-
	loss-averse			averse		
	mean	sd	mean	sd	mean	se
соор	0,852	0,355	0,800	0,400	0,0523***	0,014
resp_male	0,966	0,181	0,914	0,280	0,0516***	0,009
educ_level_1	0,534	0,499	0,559	0,497	-0,025	0,018
educ_level_2	0,398	0,490	0,235	0,424	0,162***	0,016
resp_age	50,466	9,076	44,657	10,959	5,809***	0,375
sint_truiden	0,773	0,419	1,000	0,000	-0,227***	0,008
resp_owner	0,898	0,303	1,000	0,000	-0,102***	0,006
inherited	0,432	0,495	0,714	0,452	-0,282***	0,017
co_manag	0,705	0,456	0,371	0,483	0,333***	0,017
area_inprod	40,423	42,427	16,892	9,932	23,53***	0,868
area_owned	27,889	31,429	12,681	10,060	15,21***	0,680
farm_income	580,928	585,899	248,266	175,063	332,7***	13,012
N	27	28	10	85	381	3

Extremely loss-averse farmers are:

"Relatively young and not so educated farmers, having inherited a relatively small farm that they manage alone"

		Model 1: EUT	Model 2: CPT	Model 3: CPT	Model 2: CPT Consistent only
		(1)	(2)	(3)	(4)
r	constant	0.1384*** 0.212* (0.0352)	**		
σ	constant		0.2617*** 0 (0.0118)).280***	0.2696*** (0.0124)
λ	constant		1.2922*** 2 (0.1594)	2.275***	1.1625*** (0.1564)
γ	constant		0.6839*** 0 (0.0328)	0.655*** 0.6840*** (0.0328)	0.7002*** (0.0342)
α	constant			0.2618*** (0.0118)	
в	constant			0.2934*** (0.0200)	
	H ⁰ : r=1	p-value: 0.000 0.000			
	$H^0: \lambda = 1$		p-value: 0.067	0.000	p-value: 0.299
	H^0 : α = θ			p-value: 0.041 0.0	00
	N	4247/137	4247/137	4247/137	3813/123

Maximum Likelihood Estimations with standard errors clustered at the respondent level Stochastic error=0; tech(bfgs $5\ dfp\ 5\ nr\ 5\ bhhh\ 5)$

* p<0.10, ** p<0.05, *** p<0.01

5th Results: How risk preferences shape farmer's strategies and performances?

- Hail insurance take-up is correlated with risk aversion
- Production losses due to frost (april 2017) is correlated with loss aversion
- Marketing strategies:
 - Pre-harvest contract: correlated with loss-aversion
 - Online selling: correlated with probability distortion
- Investment in preventive measures is only explained by wealth

The 2nd Experiment: Contractual Preferences

- One key condition: Institutional Arrangements
 - Value chains are becoming extremely organised, with stricter standards and rules, and farmers do not have much alternatives
 - At the same time, the farmer is currently the main one in the chain supporting risk exposure
- We develop a Discrete Choice Experiment to extract stated-preferences of producers regarding contract's characteristics
- Observational data have limitations:
 - Only current set of chains can be observed
 - Preferences of farmers? Willingness-to-accept

The 2nd Experiment: The Experiment

The 2nd Experiment: The Experiment

Attributes:

- There is an intermediary or not
- When the contract is settled: pre-harvest versus post-harvest contract
- Price volatility: from low to high
- Price pooling or not
- The average price received per kilo of pear

Objectives:

- To compare preferences with the real choices made by each producer
- To test the possibility of developping new types of contracts to reduce individual risk by pooling revenue
- To measure the willingness-to-accept each of the attributes and levels

Questions?

isabelle.bonjean@kuleuven.be